7. Linear Independence and the Rank of a Matrix

The results in this section provide another condition which is necessary and sufficient for the existence of the inverse for a square matrix.

Let \(A = [A_1, A_2, \ldots, A_N] \) be an \(M \times N \) matrix. We say that the \(N \) column vectors of \(A \) are \textit{linearly independent} if the only solution \(x \) to

\[
(22) \quad Ax = 0_M
\]

is \(x = 0_N \). If a solution vector \(x \neq 0_N \) to (22) exists, then we say that the columns of \(A \) are \textit{linearly dependent}.

How can we determine whether the columns of \(A \) are linearly dependent or independent? The Gaussian triangularization algorithm developed in section 3 above can be used to answer this question.

Consider \textit{Stage 1} of the Gaussian algorithm. If we end up in case (iii) (so that \(A_{1*} = 0_M \)), then we can satisfy (22) by choosing \(x = e_1 \) (where \(e_1 \equiv (1, 0_{M-1}^T) \) is the first unit vector of dimension \(M \)). In this case where \(A_{1*} = 0_M \), we can immediately deduce that the columns of \(A \) are linearly dependent.

Now assume that cases (i) or (ii) occurred in Stage 1 of the algorithm and we move on to \textit{Stage 2} (assuming \(N \) and \(M \) are greater than one) of the algorithm. If case (iii) occurs in Stage 2, then at the end of Stage 2, the first two columns of the transformed \(A \) matrix have the following form:

\[
(23) \quad \begin{bmatrix} u_{11} & u_{12} \\ 0_{M-1} & 0_{M-1} \end{bmatrix}
\]

where \(u_{11} \neq 0 \). Consider solving the following equation:

\[
(24) \quad u_{11} x_1 + u_{12} x_2 = 0.
\]

If we set \(x_2 = 1 \), then since \(u_{11} \neq 0 \), we can solve (24) for \(x_1 \) as follows:

\[
(25) \quad x_1 = -u_{12}/u_{11}.
\]

Let the \(M \times M \) matrix \(E \) denote the product of the elementary row operation matrices that transform the first two columns of \(A \) into the case (iii) upper triangular matrix defined by (23). Now premultiply both sides of (22) by \(E \) to obtain:

\[
(26) \quad EA x = E0_M = 0_M.
\]

It can be seen, using (23) - (25), that if we choose \(x \) to be the following vector:
(27) \(x^* = -(u_{12}/u_{11})e_1 + e_2 \neq 0_N, \)

then \(x^* \) satisfies (26). Recall from the previous section that each elementary row matrix that adds a multiple of one row to another row has a determinant equal to one. Since \(E \) is a product of these matrices, its determinant will also equal one. Hence \(E^{-1} \) exists and we can premultiply both sides of \(EAx^* = 0_M \) by \(E^{-1} \) and conclude that \(Ax^* = 0_M \) with \(x^* \neq 0_N \). Thus if case (iii) occurs at the end of Stage 2 of the Gaussian triangularization algorithm, we can conclude that the columns of \(A \) are linearly dependent.

We now need to consider two cases dependent on whether the number of rows of \(A \) (\(M \)) is greater or less than the number of columns of \(A \) (\(N \)).

Case (1): \(M \geq N \).

In this case, we follow the Gaussian algorithm through all \(N \) stages. If at the end of any stage (say stage \(i \)) of the algorithm, we find that \(u_{ii} = 0 \), we can adapt the above stage 2 argument to show that there is a nonzero \(x^* \) vector (which has \(x_{i}^* = 1 \) and \(x_{j}^* = 0 \) for \(j > i \)) such that \(Ax^* = 0_M \) and hence the columns of \(A \) are linearly dependent.

On the other hand, if all of the diagonal elements of the final upper triangular matrix are nonzero, then we can show that the columns of \(A \) are linearly independent. In this case, the final \(U \) matrix has the following form:

\[
\begin{pmatrix}
0 & u_{12} & \ldots & u_{1N} \\
\vdots & \ddots & \ddots & \vdots \\
0 & 0 & \ldots & u_{NN} \\
0 & 0 & \ldots & 0 \\
\end{pmatrix}
\]

Let \(E \) represent the product of the elementary row matrices that transform \(A \) into the \(U \) defined by (28); i.e., we have

\[
(29) \quad EA = U \quad ; \quad |E| = 1.
\]

Premultiply both sides of (22), \(Ax = 0_M \), by \(E \) to obtain:

\[
(30) \quad EAx = Ux = E0_M = 0_M.
\]

Using (28), we see that the \(N \)th equation in (31) is:

\[
(31) \quad u_{NN} x_N = 0
\]
and since $u_{NN} \neq 0$ by hypothesis, we must have $x_N = 0$. Now look at the N-1st equation in (30):

\[(32) \quad u_{N-1,N-1} x_{N-1} + u_{N-1,N} x = 0.\]

Substituting $x_N = 0$ into (32) yields

\[(33) \quad u_{N-1,N-1} x_{N-1} = 0\]

and since $u_{N-1,N-1} \neq 0$ by hypothesis, we must have $x_{N-1} = 0$. Continuing on in the same way, we deduce that the only x solution to (30) is $x^* = 0_N$.

It is obvious that $x^* = 0_N$ satisfies $Ax = 0_M$. Could there be any other solution to $Ax = 0_M$? Let x^{**} be such that

\[(34) \quad Ax^{**} = 0_M.\]

Premultiplying both sides of (34) by E leads to:

\[(35) \quad EAx^{**} = Ux^{**} = 0_M.\]

But the only solution to (35) is $x^{**} = 0_N$. Hence under our Case (1) hypothesis where $M \geq N$ and all $u_{ii} \neq 0$, $i = 1, 2, \ldots, N$, we deduce that the columns of A are linearly independent. If any of the $u_{ii} = 0$, then the columns of A are linearly dependent.

Case 2: $M < N$.

In this case, carry out the Gaussian triangularization procedure until we run out of rows. The final U matrix will have the following form:

\[
U = \begin{bmatrix}
\underline{u_{11}} & u_{12} & \cdots & u_{1M} & u_{1M+1} & \cdots & u_{1N} \\
0 & u_{22} & \cdots & u_{2M} & u_{2M+1} & \cdots & u_{2N} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & u_{MM} & u_{MM+1} & \cdots & u_{MN}
\end{bmatrix}
\]

If any of the $u_{ii} = 0$, then we can adapt our previous arguments to show that the columns of A are linearly dependent. For example, suppose u_{22} is the first zero u_{ii}. Then the $x^* \neq 0_N$ defined by (27) will satisfy $Ax^* = 0_M$.

If $u_{ii} \neq 0$ for $i = 1, 2, \ldots, M$, then consider the equations $Ux = 0_M$. If we set $x^*_{M+1} = -1$ and $x^*_{M+2} = x^*_{M+3} = \ldots = x^*_N = 0$, then the equations $Ux = 0_N$ reduce to
which can readily be solved for \(x_1^*, \ldots, x_M^* \); i.e.,

\[
x_M^* = \frac{u_{MM+1}}{u_{MM}};
\]

\[
x_{M-1}^* = \left[\frac{u_{M-1,M+1} x_M^*}{u_{M-1,M-1}}\right];
\]

etc.

The resulting \(x^* \neq 0_N \) and hence we deduce that the columns of \(A \) are linearly dependent.

Thus if we are in Case (2), we inevitably deduce that the columns of \(A \) are linearly dependent.

Putting all of the above material together, we find that the columns of \(A \) are linearly dependent unless \(M \geq N \) and the \(N \) \(u_{ii} \) elements in (28) are all nonzero. Only in this last case, are the columns of \(A \) linearly independent.

Definition: The rank of an \(N \) by \(M \) matrix is the maximal number of linearly independent columns which it contains.

Example the rank of

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

is 3, the rank of

\[
\begin{bmatrix}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 3
\end{bmatrix}
\]

is also 3.

Lemma (11): If the rank of the \(N \) by \(N \) matrix \(A \) is \(N \), then \(A^{-1} \) exists.

Proof: If the rank of the \(N \) by \(N \) matrix is \(N \), then all of the columns of \(A \) are linearly independent. Hence, when implementing the Gaussian triangularization of \(A \), all of the diagonal elements \(u_{ii} \) of the upper triangular matrix \(U \) must be nonzero. Hence the determinant of \(U = \prod_{i=1}^{N} u_{ii} \) is also nonzero. Recall that

\[
EA = U \quad \text{where} \quad |E| = 1.
\]

Hence, taking determinants on both sides of (39):

\[
|EA| = |E| |A| = |A| |U| = \prod_{i=1}^{N} u_{ii} \neq 0,
\]
and we conclude that \(|A| \neq 0 \) so \(A^{-1} \) exists. Q.E.D.

Problem 14: Let \(A \) be \(M \times N \) where \(M > N \) and consider the system of equations

\[
(i) \quad Ax = b
\]

where \(x \) is an \(N \) dimensional solution vector and \(b \) is an \(M \) dimensional vector of parameters. Suppose the \(N \) columns of \(A = [A_{\bullet 1}, A_{\bullet 2}, \ldots, A_{\bullet M}] \) are linearly independent. Under what conditions on \(b \) will a solution \(x \) to (i) exist and how could you compute it if it did exist? *Hint:* Make use of the \(M \times M \) elementary row matrix \(E \) which reduces \(A \) to upper triangular form \(U \); i.e., \(E \) and \(U \) satisfy (28) and (29) in the text above.

8. **Comparative Statics Analysis of a System of Linear Equations**

Let \(A \) be an \(N \times N \) matrix and \(b \) an \(N \) dimensional vector. If \(|A| \neq 0 \), then the solution \(x \) to \(Ax = b \) can be written as:

\[
(41) \quad x = A^{-1}b.
\]

Obviously, the components of the solution vector \(x \) depend on the components \(a_{ij} \) of \(A \) and \(b_i \) of \(b = [b_1, b_2, \ldots, b_N]^T \). How does \(x \) change as the \(a_{ij} \) and \(b_i \) change?

Using (41), the \(N \times N \) matrix of the derivatives of \(x_i \) with respect to \(b_j \), \(\partial x_i / \partial b_j \), can be written as

\[
(42) \quad d(bx) = [\partial x_i / \partial b_j] = A^{-1}.
\]

Recalling the determinantal formula for \(A^{-1} \) given in Lemma (11), we see that

\[
(43) \quad \partial x_i / \partial b_j = A_{ji} / |A| ; \quad 1 \leq i, j \leq N
\]

where \(A_{ji} \) is the \(j \)th cofactor of \(A \).

In order to determine how the components of \(x \) change as the components of \(A \) change, it is convenient to study a somewhat more general problem: we let each component of the \(A \) matrix be a function of the scalar variable \(t \) (i.e., \(a_{ij} = a_{ij}(t) \) for \(1 \leq i, j \leq N \)) and then \(x \) defined by (41) will also be a function of \(t \), \(x(t) \). We then compute the vector of derivatives, \(x'(t) = [x_1'(t), \ldots, x_N'(t)]^T \). Before we do this, we establish a preliminary result.

Lemma (12): Let \(A(t) = [a_{ij}(t)] \) have \(N \) columns and \(B(t) = [b_{ij}(t)] \) have \(N \) rows so that \(C(t) = A(t)B(t) \) is well defined. Note that each element of \(A(t) \) and each
element of \(B(t) \) is a function of the scalar variable \(t \). Then the matrix of derivatives with respect to \(t \) of the product matrix is

\[
\frac{d}{dt} \mathbf{C}(t) = \mathbf{A}(t) \mathbf{B}(t) + \mathbf{A}(t) \frac{d}{dt} \mathbf{B}(t)
\]

where \(\mathbf{A}(t) = \begin{bmatrix} a_{ij}(t) \end{bmatrix} \) and \(\mathbf{B}(t) = \begin{bmatrix} b_{ij}(t) \end{bmatrix} \) are the matrices of derivatives of \(\mathbf{A}(t) \) and \(\mathbf{B}(t) \).

Proof: The \(ij \)th element of \(\mathbf{C} \) is

\[
\begin{align*}
c_{ij}(t) = & \left(\mathbf{A} \right)_{i} \left(\mathbf{B} \right)_{j}(t) = \sum_{n=1}^{N} a_{in}(t)b_{nj}(t). \\
\end{align*}
\]

Differentiating (45) with respect to \(t \) yields for all \(i \) and \(j \):

\[
\frac{d}{dt} c_{ij}(t) = \sum_{n=1}^{N} a_{in}(t)\frac{d}{dt}b_{nj}(t) + \sum_{n=1}^{N} a_{in}(t)b_{nj}(t).
\]

It can be seen that equations (46) are equivalent to equations (44).

Q.E.D.

Now let the \(\mathbf{B}(t) \) matrix which appears in Lemma (12) be \(\mathbf{A}^{-1}(t) \) and differentiate both sides of the following identity with respect to \(t \):

\[
\frac{d}{dt} \mathbf{A}(t) \mathbf{A}^{-1}(t) = \mathbf{I}_N.
\]

Using Lemma (12), we obtain:

\[
\mathbf{A}(t)\frac{d}{dt} \mathbf{A}^{-1}(t) + \mathbf{A}(t)[\frac{d\mathbf{A}}{dt}]\mathbf{A}^{-1}(t) = 0_{N\times N}
\]

where \(\frac{d}{dt} \mathbf{A}^{-1}(t) = \begin{bmatrix} \frac{d}{dt} a_{ij}^{-1}(t) \end{bmatrix} \) is the \(N \) by \(N \) matrix of derivatives of the components of \(\mathbf{A}^{-1} \) with respect to \(t \). Premultiply both sides of (48) by \(\mathbf{A}^{-1}(t) \) and after rearranging terms, we obtain the following formula:

\[
\frac{d\mathbf{A}^{-1}(t)}{dt} = -\mathbf{A}^{-1}(t)\frac{d\mathbf{A}}{dt}\mathbf{A}^{-1}(t).
\]

Now return to (41) which we rewrite as:

\[
x(t) = \mathbf{A}^{-1}(t)b.
\]

Differentiating (50) with respect to \(t \) and using (49) yields:

\[
\frac{d}{dt} x(t) = \left[\frac{d}{dt} x(t) \right] = \left[\begin{array}{c} \frac{d}{dt} x_1(t) \\ \vdots \\ \frac{d}{dt} x_N(t) \end{array} \right] = \begin{bmatrix} a_{ij}(t) \end{bmatrix} \begin{bmatrix} \frac{d}{dt} x_1(t) \\ \vdots \\ \frac{d}{dt} x_N(t) \end{bmatrix} = \begin{bmatrix} a_{ij} \end{bmatrix} \begin{bmatrix} \frac{d}{dt} x_1(t) \\ \vdots \\ \frac{d}{dt} x_N(t) \end{bmatrix}.
\]

If only \(a_{ij} \) depends on \(t \), then
\[(52) \quad A(t) = e_i e_j^T a_{ij}(t)\]

where \(e_i\) and \(e_j\) are the \(i\) and \(j\)th unit vectors. Substituting (52) into (51) yields in this special case:

\[(53) \quad x(t) = [A^{\text{T}}(t)e_i e_j^T a_{ij}(t)] A^{\text{T}}(t)b.\]

Problem 15: Suppose the \(N\) components of the \(b\) vector are all functions of the scalar variable \(t\); i.e., we have \(b(t) = [b_1(t), \ldots, b_N(t)]^T\). Define

\[(i) \quad x(t) = A^{-1} b(t)\]

where the \(N\) by \(N\) matrix \(A\) does not depend on \(t\) and \(|A| \neq 0\). Exhibit a formula for the vector of derivatives \(x(t)\). *Hint:* This problem is easy!

Problem 16: Let \(A\) be an \(N\) by \(N\) matrix. Regard \(|A|\) as a function of the \(ij\)th element of \(A\), \(a_{ij}\); i.e., define the function \(f(a_{ij}) = |A|\). Find a formula for the derivatives of the determinant of \(A\) with respect to \(a_{ij}\); i.e., calculate \(f'(a_{ij})\). *Hint:* use Lemma (10).